Ziheng Cheng

🛛 alex-czh@stu.pku.edu.cn 🛛 🛔 Homepage 🛛 github.com/Alexczh1

EDUCATION

Ph.D. in Industrial Engineering and Operations Research

UC Berkeley, CA, USA

B.S. in Mathematics

Peking University, Beijing, China

PUBLICATIONS & MANUSCRIPTS

(* stands for equal contribution)

- Kernel Semi-Implicit Variational Inference Ziheng Cheng*, Longlin Yu*, Tianyu Xie, Shiyue Zhang, Cheng Zhang (ICML 2024)
- Reflected Flow Matching Tianyu Xie*, Yu Zhu*, Longlin Yu*, Tong Yang, **Ziheng Cheng**, Shiyue Zhang, Xiangyu Zhang, Cheng Zhang (ICML 2024)
- The Limits and Potentials of Local SGD for Distributed Heterogeneous Learning with Intermittent Communication Kumar Kshitij Patel*, Margalit Glasgow*, Lingxiao Wang, Nirmit Joshi, Ziheng Cheng, Nathan Srebro (COLT 2024)
- Momentum Benefits Non-IID Federated Learning Simply and Provably Ziheng Cheng*, Xinmeng Huang*, Pengfei Wu, Kun Yuan (ICLR 2024)
- Particle-based Variational Inference with Generalized Wasserstein Gradient Flow Ziheng Cheng*, Shiyue Zhang*, Longlin Yu, Cheng Zhang (NeurIPS 2023)
- Joint Graph Learning and Model Fitting in Laplacian Regularized Stratified Models Ziheng Cheng*, Junzi Zhang*, Akshay Agrawal, Stephen Boyd (preprint, under review)

WORKING PAPERS

 Distributed Adaptive Algorithms with Local Updates Ziheng Cheng, Margalit Glasgow, Tengyu Ma

RESEARCH EXPERIENCE

Distributed Adaptive Optimization

Advisor: Prof. Tengyu Ma, Department of Computer Science, Stanford University

- Studied the benefits of local iterations to reduce communication in distributed setting.
- Proposed a distributed adaptive optimization algorithm based on gradient-clipping and Adam.
- Achieved the convergence result of Adam in distributed setting for the first time.

Optimization Theory of Federated Learning

Advisor: Prof. Kun Yuan, Center for Machine Learning Research, Peking University

- Studied the theoretical benefits of momentum in federated learning with heterogeneous clients
- Proved that momentum can accelerate the convergence of FedAvg and Scaffold without additional assumption.
- Achieved the state of the art convergence result under this setting.

Multi-task Learning / Stratified Models

Advisor: Prof. Stephen Boyd, Department of Electrical Engineering, Stanford University

- Studied and improved the method to jointly learn both the graph and the model in Laplacian Regularized stratified models.
- Proposed an optimization algorithm for the joint learning framework and proved its convergence under nonconvex setting.
- Conducted related empirical analysis to validate our method based on both synthetic and real data.

Particle-based Variational Inference

Advisor: Prof. Cheng Zhang, School of Mathematical Sciences, Peking University

Jun, 2023 - Oct, 2023

Sep, 2020-Jun, 2024

Mar, 2023 - Jun, 2023

Oct, 2022 - May, 2023

May, 2022 - May, 2023

Sep, 2024-

- Studied general Wasserstein gradient flow in probability space to propose a general particle-based VI algorithm with functional gradient.
- Established the first convergence guarantee of particle-based VI in this setting and exhibited the advantages over traditional sampling methods such as Langevin Monto Carlo.
- Conducted numerical experiments on Bayesian inference and confirmed the effectiveness of our method.

AWARDS AND HONORS

Awards	
 Honorable Mention in Alibaba Global Mathematics Competition 	2022, 2023
 Bronze Medal in ST. Yau College Student Mathematics Contest 	2022
 Meritorious Winner in Mathematical Contest in Modeling 	2022
Honors	
 May-Fourth Scholarship (top scholarship in Peking University, 0.5%) 	2023
 National Scholarship (top 0.2% nation-wide) 	2021
Merit Student of Peking University	2021-2023